
Applying Squeaky- Wheel Optimization Schedule Airborne Astronomy
Observations

Jeremy Frank and Elif Kiirklii*
NASA Ames Research Center

Mail Stop N269-3
Moffett Fieid CA 94035-1000

{frank,ekurklu} @email.arc.nasa.gov
I

Abstract

We apply the Squeaky Wheel Optimization (SWO) algcrithm
to the problem of scheduling astronomy observations for
the Stratospheric Observatory for Infrared Astronomy, an
airborne observatory. The problem contains complex con-
straints relating the feasibility of an astronomical observation
to the position and time at which the observation begins,
telescope elevation limits, special use airspace, and available
fuel. Solving the problem requires making discrete choices
(e.g. selection and sequencing of observations) and con-
tinuous ones (e.g. takeoff time and setting up observations
by repositioning the aircraft). The problem also includes
optimization criteria such as maximizing observing time
while simultaneously minimizing total flight time. Previous
approaches to the problem fail to scale when accounting for
all constraints. We describe how to customize SWO to solve
this problem, and show that it finds better flight plans, often
with less computation time, than previous approaches.

Introduction
The Stratospheric Observatory for Infrared Astronomy
(SOFIA) is NASA's next generation airborne astronomical
observatory. The facility consists of a 747-SP modified to
accommodate a 2.5 meter telescope. SOFIA is expected to
fly an average of 140 science flights per year over 'it's 20
year lifetime, and will commence operations in early 2005.
The SOFIA telescope is mounted aft of the wings :on the
port side of the aircraft and is articulated through a range of
20" to 60" of elevation. The telescope has minimal,lateral
flexibility; thus, the aircraft must turn constantly'to main-
tain the telescope's focus on an object during observations.
A significant problem in future SOFIA operations is that of
scheduling Facility Instrument (FI) flights in support of the
SOFIA General Investigator (GI) program, called the SFPP
(Single Flight Planning Problem). GIs are expected to pro-
pose small numbers of observations, and many observations
must be grouped together to make up single flights. Ap-
proximately 70 GI flight per year are expected, with 5-15
observations per flight.

The scope of the flight planning problem for supporting
GI observations with the anticipated flight rate for SOFIA
makes the manual approach for flight planning daunting.
There has been considerable success in automating observa-
tion scheduling for ground-based telescopes (Bresina 1996),
space-based telescopes such as Hubble Space Telescope

*QSS Group, Inc.

(Johnston & Miller 1994), Earth Observing Satellites (Pot-
ter & Gasch 1998) and planetary rovers (Smith 2004). How-
ever, the SOFJA flight planning problem differs from these
problems in a variety of ways. Observations are feasible
over large, continuous regions of space and time. The mo-
tion of the aircraft is governed by differential equations, and
the aircraft can be flown in any direction for any length of
time to enable an observation. The principal feasibility con-
dition for observations is a nonlinear function over the solu-
tion to the equations of motion. As a consequence of these
factors, even though SOFIA has a "closed tour" constraint
that makes it appear similar to problems such as the Trav-
eling Salesperson Problem, there are no fixed waypoints to
define routes. Also, the SOFIA problem cannot be char-
acterized only by discrete decisions. The complexity of the
differential equations and feasibility constraints makes it dif-
ficult to find good heuristics, and the expense of solving the
differential equations impacts solver performance.

Previously, a combination of heuristic search, biased
stochastic sampling, approximations and continuous opti-
mization methods were used to produce an algorithm called
ForwardPlanner for the SFPP (Frank & Kurklu 2003; Frank,
Gross, & Kiirklii 2004). However, this approach ultimately
fails to scale as more and more constraints on valid flight
plans are added to the problem description. Computation-
ally expensive lookahead search is needed to obtain good
results from ForwardPlanner. While approximations reduce
the costs of lookahead, they inaccurately calculate altitude-
sensitive fuel consumption, ignore the impact of winds, and
fail to account for special-use airspace limitations, leading
to poor quality flight plans. Consequently, a new approach
to the problem is needed.

The rest of the paper is organized as follows. We first for-
mally describe the SFPP, the constraints on flight plans, and
the optimization criteria used to compare valid flight plans.
We then briefly describe the ForwardPlanner and discuss its
problems. We then introduce Squeaky Wheel Optimization
(SWO) and discuss how to apply it to the SFPP. We show
that SWO improves upon ForwardPlanner on a small set of
examples. We then discuss a variety of ways to improve the
performance of SWO. We describe experiments to validate
the approach. Finally, we conclude and discuss future work.

SOFIA'S Choice

The SFPP (Single Flight Planning Problem) consists of a
number of observation requests, a flight day, and a takeoff
and landing airport. The objective is to find a flight plan
that maximizes the summed priority of the observations per-
formed while obeying the constraints governing legal flights.
The aircraft can perform two different classes of activities
during a flight. Flight-legs require tracking an object and
are onljr legal if the object is within the telescope elevation
limits throughout the observation. Dead-legs can be used to
reposition the aircraft to enable flight-legs, but no observa-
tions are performed. A distinguished class of dead-legs are
used to take off and return to the landing airport.

The input to the SFPP consists of a set of observation re-
quests, each consisting of the Right Ascension (RA) cr and
Declination (Dec) 6, observation duration, priority; a flight
date; initial fuel load; an altitude profile; earliest takeoff
time 81 and latest landing times 8,; the designated takeoff
and landing airports (which need not be the same); and a
list of Special Use Airspace (SUA) zones through which the
aircraft may not fly. The primary objective is to find a flight
plan that maximizes the summed priority of the observations
of the observations performed. A secondary criteria is to
maximize efficiency (the proportion of the flight spent per-
forming observations). Since it is intractable to find the best
possible plan, we limit ourselves to searching for good plans
that perform many observations of high priority. Solving the
SFPP requires selecting the set of observations to service,
ordering them and inserting necessary dead-legs.

Constraints on Valid Flights

In this section we describe the constraints on valid solutions
to the SFPP. The constraints linking aircraft motion and ob-
servation feasibility are the most important component of the
problem, so we describe them in detail here. If an observa-
tion is scheduled, then it must be performed for the requested
duration without interruption. As we will see, the elevation
depends on the coordinates of the object being observed, the
position of the aircraft, and the time. SOFIA can view ob-
jects between 20" and 60" of elevation; checking this con-
straint requires first computing the aircraft's ground track
throughout the course of the observation. Figure 1 shows
the interaction between the object's position in the sky at a
particular time, the aircraft's ground track, and the telescope
elevation. The Earth is modeled as an oblate spheroid E,
whose surface is defined by the equation 5 + 5 + $ = 1
where c < a.

Let p be the aircraft's current position, (latitude y and
longitude L) and 8 be the (Sidereal) time that the aircraft is
at p. Let s be the vector from the center of E to p. Let
be the vector defining the vector to an astronomical object o,
and P as the plane tangent to E at p . Let i , j, k be the unit
vectors in the 2, y, 3 directions respectively. Let fi be the
vector normal to P: 6 = 41 + 3j + %& (Note that and
6 are generally not parallel since E is a spheroid.) Let T>
be the projection of f' onto P; this is the object azimuth at
p, and% given by

2 2

- A L

Let 9 be the desired heading of the aircraft. The obser-
vatory must track the object inducing f': subject to the con-
straint that *e angle between ? and T; is 270", because
the telescope points out the left-hand side of the aircraft. Let
Rs(270") 'be a rotation matrix that rotates a vector 270"
around 6, a d v be the airspeed of the aircraft; then

Figure 1: The Cartesian formulation of the instantaneous
equations of motion of the aircraft and the elevation. We
have exaggecated the spheroid E.

Let H be the elevation vector with respect to P. We also
require the angle h between H and T> obey the constraint
20" 5 h 5 60" throughout an observation. Most targets are
sufficiently f a ii-om ~ a r t h that we can assume H = + + s. From vector calculus we then get the equation for the
elevatibn h: I

' h=cos- ' (HT;)
llfill llT>ll

(3)

f' is a function of o and 8; this is because the Earth rotates
on its axis. The vector ? traces a circle of radius x2 + y2 = 9, where d = / & I in 24 hours (see (Meeus 1991) for an
explanation of this).

1

A.
-.

The instantaneous change in p as the aircraft tracks o is
3 = Q. Since V is a function of F, it is a function of 0, p
and 8. Solving for the ground track is necessary to com-
pute h and check the elevation constraints. It is worth noting
that this formulation also makes it easy to add the effect of

rect for aircraft pitch by rotating about ? x fi, but we omit
these for brevity. The ground track and elevation constraints
are solved using 5th-order Runge-Kutta (Cash & K a i 1990)
with error-adaptive step sizing.

The telescope is carried aboard a Boeing 747-SP aircraft.
The fuel consumption of each engine depends on the aircraft
weight, mach number, outside air temperature, initial alti-
tude and final altitude. The fuel consumption constraints are
represented in a lookup table provided by Boeing; space pre-
cludes describing the fuel consumption constraint in more
detail. The aircraft follows a pre-determined altitude projile
that describes the maximum permitted altitude at 2n abso-
lute time after takeoff. Climbs are allowed periodically to
increase engine performance; in addition, there is less water
vapor at higher altitudes, and so better science is possible

The combination of atmospheric conditions ahd aircraft
weight may force the aircraft to fly lower than the kaltitude
profile permits. At the end of a leg, if the aircraft is allowed
to climb, it climbs to the maximum altitude permitted by the
fuel performance table or the altitude profile. The profiles
for SOFIA were developed originally in (Becklin & Horn
2001). Gridded wind and temperature climatology data is
available to correct the ground track in the face of winds
and provide data for calculating fuel consumption. Finally,
SUAs constrain the ground track of the aircraft.

-4 . A 7 . n ;.Ids by Zdding the zppropriatte vectors to V, zzd also ccr-

ForwardPlanner and its Discontents
ForwardPlanner, an algorithm for solving the SFPP, is de-
scribed in in (Frank & Kiirklii 2003) and (Frank, Gross, &
Kiirklii 2004). ForwardPlanner combines progression based
search, heuristics and stochastic sampling, resulting in a fast,
incomplete randomized algorithm. The core of the algo-
rithm is observation feasibility checking. An observation
is feasible if there is a sufficiently short dead-leg that makes
the observation visible, the observation remains visible in
darkness for long enough, the ground track of the dead leg
and the flight leg do not cross any SUAs, and the aircraft can
fly to the landing airport. We elaborate on this description
as follows: suppose the aircraft is at position a, L at time 0.
Consider the shortest dead-leg making an observatidn visi-
ble for long enough. If the resulting flight leg crosses any
SUA, the observation is rejected. If the dead leg crosses an
SUA, the heading is shifted minimally left or right from the
heading of the shortest dead leg until the dead leg misses
all SUAs. The duration of the leg is then adjusted'to ensure
the object is visible for the required duration. If the 'result-
ing dead leg is longer than D (an operational limitation on
the longest permissible dead-leg), then the observation, is re-
jected. If the observation begins before sunset or ends after
sunrise at the localposition, the observation is rejected. (Re-
member, changing your position changes the time at,which

'Constraints on permitted water vapor for feasible observations
are not treated in this paper.

Current Plan-

Figure 2: ForwardPlanner's search. At each step, all feasible
observations are considered as the next observation in the
plan. For each feasible observation, an extension of the plan
is built using lookahead. The extensions are evaluated to
determine which observation to perform next (the numbers
inside each feasible observation.) The values are used to
construct a probability distribution used to choose the next
observation; each choice is indicated by a hexagon.

the sun rises or sets.) Finally, if the aircraft cannot return
to the landing airport after the observation is performed, the
observation is rejected. If it survives all of these checks, it is
feasible.

Each feasible observations is evaluated by first adding the
observation to the flight plan, then heuristically adding a
fixed number of additional observations. This "lookahead"
is performed to estimate the best flight plan possible after
adding each observation. These short extensions are evalu-
ated using a weighted sum of the priority of the observations
performed so far, the eficiency (ratio of time spent observing
to total flight time) of the (incomplete) flight, the estimated
time to return to the designated landing airport, and the total
time spent in turns. The heuristic rank of each observation
is treated as the mass of a probability distribution used to
select the next observation. Thus, if we have a set of choices
C and heuristic values of of these choices ~ (c) E C, we
choose an element c E C with probability La. This

technique is similar to Heuristic Biased Stochastic Sampling
(HBSS), a technique used for scheduling ground based tele-
scopes (Bresina 1996). This means that the "best" candidate
need not be selected at any stage of the process, but has the
highest probability of being selected next. The process of
evaluating the feasible observations and adding the next ob-
servation to a flight is shown in Figure 2.

d € C v (d)

The principal cost of ForwardPlanner is in the lookahead
phase, where many legs are constructed to test observation
feasibility. Let N be the number of observation requests,
let K be the lookahead depth, and let M be the maximum
number of observations that can be in any flight plan. Then
ForwardPlanner makes O (N 2 K M) calls to Feasible(); a

I

.. ...

.'

.-
1 ..

proof of this appears in (Frank & Kurklu 2003). The calls
to Feasible() include numerous dead-leg construction steps.
The basic algorithm was improved upon in (Frank, Gross,
& Kiirklii 2004) by observing that many of these expensive
dead-leg construction steps could be eliminated by formu-
lating the problem of finding dead-legs to prove feasibility
as a zero-finding problem. This approach reduced the run-
time of ForwardPlanner without impacting the value of the
flight plans found. Further reductions in runtime were later
accomplished by approximating the flight dynanlics calcu-
lations using Euler's Method, which involves flying a con-
stant heading for a fixed (small) duration relative to the to-
tal observation time. Unfortunately, this approach lead to
a reduction in the value of the plans found. Furthermore,
as SUA and altitude sensitive fuel consumption constraints
were added to the problem description, the Euler's Method
approach failed to deliver good quality flight plans.

Squeaky Wheel Optimization for the SFPP
Squeaky Wheel Optimization (SWO) (Joslin & Clements
1999) was originally developed for scheduling problems
with an optimization objective. SWO employwa permuta-
tion of tasks to schedule, and a fast procedure called a Con-
structor that treats each task in order, ultimately scheduling
tasks or rejecting them. The permutation and its resulting
schedule are then analyzed by a Critic to determine a new
permutation that might schedule tasks that were previously
rejected. The cycle repeats until all tasks are scheduled or
for a fixed number of iterations. SWO was originally eval-
uated on Graph Coloring (Joslin & Clements 1999), and
has since been employed for satellite observation schedul-
ing (Globus et ul. 2004) and range scheduling (Barbalescu,
Whitley, & Howe 2004), as well as project scheduling with
temporal constraints (Smith & Pyle 2004).

Figures 3 and 4 describe a version of SWO specialized for
solving the SFPP. An initial permutation of the observations
and takeoff time are generated. The Constructor assumes
that the flight begins at the takeoff time, and that the permu-
tation P imposes a precedence ordering on the observations,
and attempts to construct a schedule. If any of the observa-
tions are rejected, SWO attempts to modify the permutation
P by analyzing the rejected observations and the resulting
flight plan F . There is a complex interplay between the per-
mutation modification and takeoff time selection. First, it is
possible to construct very bad flight plans by poor selection
of the takeoff time. Second, the combination of the takeoff
time, permutation and the fast scheduler implicitly schedules
a subset of the observations. Finally, the fact that permuta-
tions are constantly modified allows reconsideration of the
takeoff time based on the new permutation. For these rea-
sons, this version of SWO ensures that new takeoff times
can be chosen after each modification of the permutation.

In preparation for describing our SWO variants, we will
introduce some concepts. The SFPP can be relaxed by
throwing away the flight dynamics and fuel consumption,
effectively pretending that the observatory is fixed at the
takeoff airport. This leaves a problem in which observa-
tions have release times (earliest rise times), due dates (latest
set times), occupy a unary resource (the telescope). Since
SOFIA has a maximum elevation limit, the true feasibility

Feasible(o, p)
o is the observation
p is the current position
D is maximum dead leg duration
(d, h, z) = Newton(o,p)
h = heading, d = duration, z = SUA zone
if the dezd-!eg crosses my SU.4 mne z

h' is heading s.t. all z not crossed minimizing Ih - h'l
d' is new duration s.t. visibility constraint satisfied
d = d'; h = h' # Revise dead leg to avoid SUAs
if d > D return false

if dead leg home after dead-leg followed by o
if observation starts and ends in darkness

return true
return false

Figure 3: The feasibility test with Newton's Method for find-
ing dead lep.

windows ofLobjects may not be convex. Additionally, ob-
jects could set then rise during the night, but usually objects
are observed at times of year when they are visible all night
(and thus aGhieve their maximum elevation sometime dur-
ing the night). This approximation is not bounding, because
objects may rise earlier and set later at different positions
than the takeoff airport. The approximation is still an "P-
Complete pioblem , but we use approximate solutions of
this problem as heuristics.

Convex time windows during which an object at Right
Ascension Q and declination 6 is visible can be constructed
as follows. If the aircraft is at latitude y longitude L, the
earliest and latest times e,., 0, at which the observation is
visible by SOFL4 are given by (Meeus 1991):

)+L+CY
sin(2O) - (sin6)(siny)

(cos 6) (cos y) e = c0s-I

The sin(20)'term arises from the fact that SOFIA'S lower
elevation limit is 20". Note that cos-l(z) has 2 solutions,
which provide the earliest rise time 6,. and latest set time 6,
of the object,at this position. The time of sunset and sunrise
at this position can be used to further tighten this window.
There can be,at most 2 feasible windows; by default we con-
struct thejrSt feasible window. We will also often refer to
the time at which an object reaches its maximum elevation
(above the local horizon), called the transit time. This is
simply +.

Constructing , a Flight Plan
As Figure 4 indicates, construction of a flight plan occurs
after generating an order of the observation requests and B
takeoff time. Each observation in the permutation is tested
for feasibility given the current position of the aircraft and
the current t h e . Feasible observations are added to the
flight plan unconditionally, while infeasible observations are
rejected. '

'

*According to Graham's hierarchy, it is 111 wiUr which
Karp proved dP-complete (Briicker 1998)

S WO(MaxFlights,MaxRepeats)
F is (initially empty) current flight plan
B is (initially empty) best flight plan
P is a permutation of the requested observations
R is (initially empty) rejected observations
for MaxRepeats

Generate qer?r.utction ?
for MaxFlights

Select the takeoff time
Construct flight from P
p is the current position of F
for observation o E P

if Feasible(o, p)
Addp to F

else add p to R
end for
Update best flight plan B
if R = 0 return F
else # Modify P by analyzing F and R

Choose object(s) in R to reorder
Choose position(s) in P using F to reschedule

end for
end for
return B

Figure 4: A sketch of the family of SWO-based Flight Plan-
ning Algorithm. Pseudocode lines in italics indicate design
choices that will be described in later sections. .

Generating Initial Permutations
Generating initial permutations of observations is performed
in the following ways:

0 Uniform. If there are N observations, one of the N ! per-
mutations is chosen uniformly at random.

0 Sort by Earliest Start Time Rise at the takeoff airport. We
calculate 8, as described in the previous section. Q'he in-
tuition behind this ordering is that flights often occupy the
whole night, so beginning observations as early as possi-
ble is a good initial guess. Furthermore, this allows the
largest time window to observe any object.

0 Sort by Latest Start Time Set at the takeoff airport. We
calculate 8, as described in the previous section. Observ-
ing an object as late as possible may be a cheap method
of ensuring enough time remains to schedule necessary
dead-legs.
Sort by Transit Time Transit at the (landing) airport. The
intuition here is that this allows observing very nearby the
airport; while one object is being observed, the next object
moves closer to the landing airport, allowing the aircraft
to "loiter" nearby.

,

Generating Takeoff Time
As we previously observed, due to the combination of over-
subscription and the complex nature of the visibility con-
straints, choosing a good takeoff time is important to con-
structing good flight plans. We therefore break down the
takeoff time generation process into 2 phases: determining
a range of takeoff times, and sampling from the range.

Generating a takeoff time can be done as follows:

0 Estimated flight duration FlightDur. If we simply assume
that the aircraft will stay aloft as long as possible, we can
estimate the flight duration from the initial fuel load and
flight profile. The takeoff time range is sunset to sunrise
minus this estimated flight duration. Since this quantity
is independent of the permutation, it needs be calculated
only once. Especially in the summertime for long flights,
this approach will reduce the takeoff time range to one
time (roughly half an hour before sunset).

0 Minimum of Earliest Start Times Min Rise. We can cal-
culate the minimum over a!! 9, at the takeoff aiiiort, and
"pad" this by the amount of time needed to climb to oper-
ational altitude. Since this quantity is independent of the
permutation, it needs be calculated only once. Only one
takeoff time is generated by this approach.

0 Optimize First Observation in Permutation. It is clear
that 8, can be a bounding above approximation to the ear-
liest time when an observation can be performed; to see
why, observe that flying towards the observation makes it
possible to observe it earlier. Another approach is to as-
sume that the first observation in a permutation is meant
to be observed, and to calculate the earliest time at which
this observation can be performed. Binary search over
takeoff times is performed to find the takeoff time leading
to the earliest feasible observation time for the first obser-
vation. Only one feasible takeoff time is generated by this
approach. As the first observation in the permutation can
change, the takeoff time will need to be recalculated.

0 Approximate solution to the relaxed scheduling problem
Feas-Sched . The takeoff time range calculation can use
the current permutation as a guide to the actual schedule
that will be constructed. Since all we are interested in is a
range of takeoff times, we consider only fast approximate
solutions to the relaxed problem. We use the Or and Os
calculated at the takeoff airport to approximate the time
windows for the observations. A feasible solution to the
relaxed scheduling problem can be generated using the
permutation as an ordering heuristic, and either greedily
scheduling from the beginning or the end of the permuta-
tion. (It is trivial to see that different feasible schedules,
and different takeoff time ranges, can be generated by
scheduling forwards or backwards.) Once a feasible so-
lution is generated, we calculate the slack of the first fea-
sible observation, again "padding" for the time to climb
to altitude.

0 An elaboration Feas-First on the previous method is to
adjust the 8, at the takeoff airport based on optimizing
the first observation's dead leg to observe the object as
early as possible.
If a range of takeoff times is generated, we select from

them uniformly at random.

Modifying the Permutation
In order to modify the permutation P, we must build a critic
to both select a rejected observation r in R and decide where
in P we would like to put r. We want to use the flight plan F
built with permutation P to decide how to m o d e P. Each
observation in a flight plan defines a "slot'' in which a new
observation could be placed. Unlike SWO approaches taken

in (Barbalescu, Whitley, & Howe 2004) and (Globus et al.
2004), we do not perform "blind" migration of jobs in the
permutation. Rather, we identify where in the permutation
we can move rejected observations to ensure that the result-
ing schedule is modified. Since we guarantee that a rejected
observation will be scheduled during the next construction
phase, we run the risk that some later observations in the
flight might be displaced. Thus, it is important to estimate
how much we "regret" moving an observation to a particular
place.

We break critics up into phases. First off, we must de-
termine which observations can be performed in each slot.
Second, we must modify the permutation by choosing re-
jected observations to move and a slot for the observation to
occupy, which implicitly determines where in the permuta-
tion the observation will move.

Feasibility testing is done as follows. For each rejected
observation and candidate slot in the flight plan, the aircraft
begins at the position and time defined by the prefix of the
flight. The feasibility testing procedure of Figure 3 is used
to determine feasibility. Regret calculations are done as fol-
lows. For each feasible observation-slot pair, we could run
the constructor and look at the difference in the number (al-
ternatively, summed priority) of observations scheduled by
the constructor after modifying the permutation. Given the
expense of the constructor, however, we approximate the
"regretted" observations. This is done by examining the time
at which the new observation ends. Since the new obser-
vation is guaranteed to be feasible, successive observations
will be delayed, both due to the duration of the new obser-
vation and its dead leg (if any). We then evaluate the rate
of change of the elevation of each successive observation to
find out if it would still be visible at the same position at
the later time. This is obviously an approximation, since the
aircraft position would change after the newly inserted ob-
servation. Furthermore, it doesn't consider the possibility
that unscheduled observations in the permutation could be
added, so it is a conservative regret estimate. In what fol-
lows, assume the problem instance contains N observation
requests. All of our critics use the biased sampling approach
described earlier to make selections. Recall that if we have
a set of choices C and values of of these choices V(C) E C,
we choose an element c E C with probability T?- d E C 44.

Permutation modification can be done as follows.
0 2-Phase. The feasibility calculation is performed first.

The regret is calculated for each feasible observation-slot
pair as follows. The first and last slots in a flight are spe-
cial cases; if either the last or first slot is feasible, the
heuristic value of the pair is N. If no observations in the
plan are "regretted" given a possible move, the value of
the pair is cN where c is a large constant. Otherwise, if a
"regretted" observation had a dead-leg, the move is penal-
ized by 0.5, otherwise it is penalized by 1. I f r is the sum
of the regret penalties for the pair, the value of the pair is

0 3-Phase. Again, the feasibility calculation is performed
first. In this case, however, we separate the choice of the
observation and the slot.
- Choose observation first. We have three ways to choose

1
r'
-

the observations. The first approach considers only the
feasible dots Obs-Feas in the existing flight plan as the
basis for choosing observations; the intuition is that this
approach abstracts what the constructor does. When
using this approach, we assign higher probability to ob-
servations with fewer slots available, on the assumption
that these observations are "harder" to insert, and will
result in worse flight plans if we don't try and fix them
at this step. If an observation is visible in s slots, the
heuristic is N + 1 - s. (Observations visible nowhere
are not chosen.)
We also have two "Time window" based options for
observation sampling, which accounts for the available
time when an observation can start. For each rejected
observation flight plan, we first calculate 8, and 8,
and choose the observation with the largest value of
Os - 8,. When 8, and 8, are calculated at the takeoff
airport Timet, this calculation can be performed once
and needs never be repeated. The heuristic value for
each observation in this case is w. When 6, and 8,
are calculated at each slot in the current flight Tirnef,
we expect improvement, but at a higher computational
cost. If S is the set of slots in the flight, the heuristic
value of each observation is minsES

' S .
- Choose slot first Slot-Feas. This approach also con-

siders only the feasible slots in an existing flight plan;
however, we choose the slot first. We assign higher
probability to slots with fewer feasible observations, on
the assumption that putting these observations some-
where else will reduce the possibilities for competing
observations, resulting in worse flight plans later on.
If ZI obkervations are visible in a slot, and the prob-
lem insbnce contains N observations the heuristic is
N + 1 - ZI. (Slots with no visible observations are not
chosen.)

In the three phase critics, the first selection reduces the
feasible abservation-slot pairs. The second selection
is made based on the regret of the remaining feasible
observation-slot pairs, as described above.

As a final wrinkle, we can modify the permutation by
moving k rejkted objects rather than just one. The idea here
is that multiple rejected observations could be re-ordered in-
dependently and potentially improve the flight plan using
fewer consdction steps. This idea was successfully em-
ployed by (Globus et al. 2004) and (Barbalescu, Whitley, &
Howe 2004) to speed up SWO.

Identifying the Right SWO Features
As we previously stated, the most time-consuming feature
of the SFPP is feasibility testing, which often involves many
leg construction steps. Whereas ForwardPlanner makes
O (N 2 K M) flight leg feasibility checks, SWO makes O (N)
feasibility checks; however, since one of the two parameters
likely scales with N for good performance on larger problem
sizes, this is misleading, and should be treated with caution.

One of the problems with designing algorithms such as
SWO is that there are vast numbers of possible algorithms;
a brief summary of the options for each feature appears in

. - a

I Permutation I TakeoffRmge 1 Critic 1 lSt Choice 1

I 1 Feas-First (Bkwd) 1 I J
Figure 5: Summary of SWO Feature choices. potice that
not all nuances of each feature are in the table.

Figure 5. Furthermore, as described in the previons para-
graph, some of the features are tightly coupled, and only
a few of the combinations are likely to work well in prac-
tice. Finally, there is the matter of tuning the number of
restarts. Our approach to this problem is to use a version of
SWO with random selection of features as a baseline. This
baseline algorithm is: Flight-Duration based takeoff time
range selection, Uniform random initial pennutation, and a
3-Phase critic that first randomly chooses observations, then
slots according to the Timet rule, and then chooses slots
based on approximate regret. We will then optimize take-
off time selection. In part, this is because it appears to be a
very important component of the constructor on its own, and
in part because good critics and good permutation selection
appears to depend on it. We will then optimize permutation
and critic dependent on the takeoff time. At all phases of
testing, we will use the Wilcoxon Signed Ranked Test (Lind-
gren 1976) to determine whether each algorithmic variant is
superior to the baseline SWO; we will select a smali subset
of promising algorithms to generate the next algorithm. In
the presentation of the Wilcoxon test results, positive z indi-
cates an algorithm variant is likely to perform better than the
baseline, while a negative z indicates an algorithm variant is
likely to perform worse than baseline. Criticality mcasure-
ments are typically given in ranges; criticalities of > 0.05
are not considered statistically significant.

Empirical Results
In this section we present empirical results for varying facets
of SWO in order to find the best overall algorithm for solving
the SWP.

Sample Problems
In Figure 6 we tabulate the number of observations, the
archived flight duration, and the airport.

We used as a benchmark the problem instances described
in (Frank & Kiirklii 2003) to determine the utility of our
new techniques. These instances are modified in a number
of ways, Most importantly, the flight horizons are widkr, and
so takeoff time is between sunset and sunrise. The climatol-
ogy data from European Center for Medium Range Weather
Forecasting. are used to provide outside air temperature
for calculating fuel consumption. The initial fuel load is
calculated from the climatology data for each day of flight,
and is based on the altitude profile 4 from (Becklin & Horn
2001). This profile conforms to realistic expectations that
good observing will require an altitude of at least 39000 ft,

www.ecmwf.int

-1 I - Algorithm Comparison (Quality) *

Problem Instance

l50aseline SWO mForwardPlanner/Euler UForwardPlanner

Figure 7: Comparison of solution quality for ForwardPlan-
ner (with and without Euler's method approximation of
flight dynamics) and SWO.

and leads to non-trivial takeoff time ranges requiring caution
in selecting takeoff times, as well as introducing the option
that not all observations can be scheduled. Finally, SUAs
impact flights from Moffett and Hawaii; we use data from
the National Geospatial Intelligence Agency's Digital Aero-
nautical Flight Information File.

The priorities of all observations are identical, and all ob-
servations can be scheduled on a designated flight day Thus,
the principal goal is to find an efficient flight with all of the
observations scheduled. The maximum dead-leg duration
was set to 4 hours. For the dead-leg search using Newton's
Method we used a step cutoff of 150 and error tolerance
t = The step parameters used in forward differencing
were: SI = 0.01" and s2 = 60 seconds. When CPU times
are reported, these experiments were run on a Sun Work-
station with dual 600 MHz CPUs and 2048 Mb memory.
Unless otherwise stated, MaxFlights = 20 and MaxRepeats
= 10.

Figures 7 and 8 compare performance on 6 sample prob-
lems. We see that Euler's Method saves considerable time
in ForwardPlanner, but leads to plans with fewer scheduled
observations (with one exception). The baseline SWO pro-
vides plans of as good or better quality as ForwardPlanner,
but at a fraction of the time of ForwardPlanner with the Eu-
ler's Method approximation speedup.

Choosing Takeoff Times
The results of varying the takeoff time selection while hold-
ing all other aspects of SWO the same are shown in Figure
9. In this figure we present the Wilcoxon Ranked Sign test
output for the best percentage of the observations found by
SWO. Again, recall that we compare each new SWO variant
to the baseline SWO described in the previous section. As

Index 1 2 3 4 5 6 t 8 9 , 10 11 12 13 14 15
Airport H H H H M M M M M M M M M M M
Date 816 818 8/10 8/12 119 1/10 1/16 6/16 6/18 6/19 6/30 716 8/12 8/16 414
Obs 9 9 10 10 7 8 8 6 10 8 8 6 11 10 9
Index 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3 1

M M M M M M M M M M M M M M
416 4/11 4/12 4/14 4/19 514 518 711 716 812 8/22 8/24 8/26 8/29 911 Date

Obs 10 8 8 8 10 10 6 7 4 6 9 8 11 10 8
Index 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Date 9/20 9 121 9/23 9/26 9 I28 9/29 1014 6/21 7/12 814 11/25 4/22 5/11 5/15 5/19
Obs 7 3 10 8 8 8 4 8 7 7 10 8 8 8 8

r n o r t M M

Airport M M M M M M M MH MK--MJT N N N N N

16
M
41.5
9

32
M

9/19
7

Figure 10: Wilcoxon Ranked Sign Test results comparing
SWO Initial, Permutation ordering variants to SWO Base-
line.

TakeoffRange I Permutation 1 N 1 Z

Problem Instance I

Crit.

W W O FomardPlanner/Euler 0 ForwardPlannerj

Figure 8: Comparison of average CPU time for Forward-
Planner (with and without Euler's method approximation of
flight dynamics) and SWO.

, - I

First Observation 1 18 I -2.05775 I [0 .01,0.025]
Feas-Sched(Fwd1 I 12 I 1.31398 I >0.05

Figure 9: Wilcoxon Ranked Sign Test results comparing
SWO Takeoff Time variants to SWO Baseline.

we can see, the least "informed" approach, Min Rise, per-
forms worst. Optimizing the takeoff time range of the first
observation also did not perform well. Both of these ap-
proaches perform worse than the baseline SWO. Solving the
relaxed feasible scheduling problem to generate the takeoff
time range did well but appeared to take more CPU time.
Interestingly-enough, for one problem instance using Or and
0, calculated at the takeoff airport performed worse than op-
timizing the takeoff time of the first observation. This is
because an SUA constraint interacts with the visibility con-
straint on the first observation, forcing it happen at a differ-
ent time; no observations were scheduled for this problem.
Optimizing the takeoff time of the first observation captures
this dependence, and leads to much more takeoff time flex-
ibility. This one flight leads to the large difference between
the Feas-Sched and Feas-First approaches.

Generating Initial Permutations
For this series of tests, we tested both Feas-Sched (Fwd)
and Feas-Sched (Bkwd) variants of takeoff time selection
with the different initial permutation methods. The results of
varying the permutation selection for these two takeoff time
selection options while using the baseline critic are shown in
Figure 10. Notice that Random is our baseline permutation
method, and thus the first and fifth lines of Figure 10 are
repeated from table 9.

The results of this test are also quite conclusive. Initially
sorting observations using Rise is clearly an improvement
over the baseline SWO, while the other initial permutation
generation methods are not a clear improvement. It seems
reasonable that rise-time based permutations should do well,

i

' .

[Critic 1 lStChoice 1 N I Z I Crit.
I 3-Phase I T ime, I 14 I 2.05593 I TO .01,0.0251 1

3-Phase 1 T imef 1 16 1 2.21055 I [0 .01 0.0251
3-Phase I Ob s-Feas. I 14 I 1.71066 I r0.025 0.051
3-Phase I Slot-Feas. 1 16 I 1.641'/5 I >0.'05
2-Phase I NIA I 14 I 2.33842 I ro.uo5,o.oii

I

Figure 11 : Wilcoxon Ranked Sign Test results comparing
SWO Critic variants to SWO Baseline.

given that the obseivations were chosen tcj be in the sky rmst
of the night on the day of observing; it isn't so clear why
Transit did not do so well. Interestingly, using takeoff time
generation method Feas-Sched (Bkwd) is clearly 'a better
complement to rise-time based initial permutation selection
than Feas-Sched (Fwd); we do not have a good explanation
for this.

Modifying Permutations
For this series of tests, we tested the Feas-Sched (Bkwd)
takeoff time generation method and Rise initial permutation
generation method with each critic method. In each case,
only one rejected observation was moved per critic applica-
tion. The results of varying the critics are shown io Figure
1 1. Notice that Timet is our baseline critic method, and thus
the first line of Figure 11 is repeated from table 10.

As expected, 2-Phase is quite good. Also as expected, for
3-Phase, we see that Timet is not as good as Timef. Some-
what surprisingly, though, neither of the 3-Phase approaches
using the exact feasibility calculation with sampling biased
by the number of slots is very promising. Sampling obser-
vations first is a little better than sampling slots first, but nei-
ther appear as likely to improve over the baseline as the other
methods tested. This suggests that even crude estiqates of
time are important when building the critics, and demon-
strates that simply using slot counts is not good enough.

Our final critic experiments use Feas-Sched (Bkwd) take-
off time generation, Rise based initial permutation selection,
and 2-Phase critic. In this experiment we vary the number
of rejected observations that are moved. The regret values
are still used to sample, and are renormalized between sam-
ples. The number of observations is moderately low, so we
limited ourselves to experiments moving 2,3 or all rejected
observations. As we see, it appears that we benefit from in-
creasing the number of rejected observations that are moved;
we conclude that the independence assumption is justified,
and that multiple observation moves do not (undnly) inter-
fere with eachother. However, there may be a quality penalty
in increasing the number of rejects moved, as the difference
is most pronounced only if we move all of the rejected ob-
servations.

The Best Algorithms

It remains now to compare the CPU performance of the
SWO algorithms. In order to make sense of this analysis, it
is important to note that SWO terminates a loop if all obser-
vations are scheduled. For the purposes-of this presentation,

l

L Crit. J

Figure 12: Wilcoxon Ranked Sign Test results comparing
critics moving variable numbers of rejected observations to
SWO Baseline.

Figure 13: Comparison of baseline SWO CPU time with
"incremental best" SWO variants identifying best SWO fea-
tures.

we consider the "best" takeoff selection routine to be Feas-
Sched (Bkwd) since Feas-First (Bkwd) is more costly and
for various reasons was not used in the subsequent experi-
ments. We will compare algorithm performance using the
mean and variance in CPU times for all 20 runs of the dif-
ferent algorithms; CPU times are given in seconds. We also
reproduce the Wilcoxon signed rank test results. The best
SWO algorithm contained only one real surprise, which is
the fact that the Feas-Sched (Bkwd) takeoff range generator
appears best when coupled with the rest of the features. The
takeoff time selection method imposes a significant compu-
tational burden on SWO, as can be seen by the increase in
the mean CPU time. While the critics also impose a compu-
tational burden on SWO, we actually see a reduction in CPU
time compared to those methods without the intelligent crit-
ics.

Figure 14: Comparison of mean and variance of SWO CPU
times for all "incremental best" SWO variants identifying
best SWO features.

I

We also show scatterplots of the average CPU time over
all 20 runs of the SWO algorithm on an instance-by-instance
basis in Figure 13. While this comparison technique ignores
cases where one algorithm outperforms another on particu-
lar problem instances, it provides a more holistic view of the
time cornparison. We show four scatterplots comparing the
CPU time of each of the best ”incremental” SWO algorithm
found with the baseline SWO. Our worst-case performance
hit is roughly a factor of 5 increase in CPU time between
the baseline SWO and the best SWO, which is moderately
high; however, this leads to algorithms that are very favor-
able when compared to the previous approaches.

Conclusions and Future Work
We have described the application of SWO to the SFPP
problem. Early results indicated that SWO was a power-
ful technique with the promise of delivering higher quality
flight plans in less time than ForwardPlanner, our previous
approach to the SFPP. A combination of approaches from
ForwardPlanner, combined with analysis of SWO features,
resulted in an SWO algorithm that fulfills this early promise.
Takeoff time selection proved to be an important component
of the overall approach. We also feel that we benefitted from
”guided” critics that guaranteed permutation modifications
resulting in new schedules.

There are several classes of future work to consider.
The next important feature of the SFPP problem involves

water vapor constraints. Initial results with variants of SWO
handling these constraints are promising, but expensive.
Furthermore, there is a close relationship between fuel load,
altitude and water vapor; full integration of this relationship
into SWO will require more work. The SFPP also involves
observation priority. Our experiments assumed all observa-
tions were of equal value; it is easy to generalize our SWO
to handle variable priority, but we have no empirical results
on performance. However, frequently astronomers want all
of best observations, then all of second best, and so on. We
have considered a ”stratified” SWO that maintains one per-
mutation per priority class. Controlling expense of this type
of SWO and revising critics an interesting open issue. The
SFPP also involves ”hard constraints” for so-called ”calibra-
tors” that ensure that data from unknown observations can
be properly analyzed. Such observations can be considered
”top priority” objects and integrated into a ”stratified” SWO.
Finally, the SFPP also requires that we build series of flights
rather than just a single flight. Preliminary flight series test-
ing indicates that SWO is a promising technique for building
flight series. However, more work is needed.

There are numerous options for elaborating on all aspects
of our proposed SWO features, particularly critics. Exam-
ples include different sampling methods, mixing greedy se-
lection with biased sampling, solving the relaxed scheduling
problem for critics, using Euler’s approximation in critics,
and so on. Another interesting avenue of work involves em-
ploying mixtures of critics, and scheduling them at different
”phases” of the SWO process. For example, observations
incurring big dead-legs could be moved to try and increase
efficiency. Also, observations early in flight will generally
have worse water vapor (lower altitudes); ”sensitive” obser-
vations pushed later in flight.

Acknowledgments
We would like to thank European Center for Medium Range
Weather Forecasting for the use of the climatology data,
Michael A. K. Gross for his ongoing assistance in this
project, and Tien Ba Dinh for prototyping SWO for the
SF?P This work was funded by the SOFIA Projects Office
and by the NASA Intelligent Systems Program.

References
Barbalescu, L.; Whitley, D.; and Howe, A. 2004. Leap
befare YOU look: Ai effective strategy in an o.*.eiSdbscilbeb
scheduling problem. In Proceedings of the l g t h National
Conference on Artijicial Intelligence.
Becklin, E., and Horn, J. 2001. High-latitude observations
on sofia. Publications of the Astronomical Society of the
PaciJc 113(786).
Bresina, J. 1996. Heuristic-biased stochastic sampling. In
Proceedings of the 13th National Conference on Artijicial
Intelligence.
Briicker, P. 1998. Scheduling Algorithm. Springer.
Cash, J. R., and Karp, A. H. 1990. A variable order runge-
kutta method for initial value problems with rapidly vary-
ing right hand sides. ACM Transactions on Mathematical
Sofhyare 1620 1-222.
Frank, J., and Kurklu, E. 2003. Sofia’s choice: Scheduling
observatiods for an airborne observatory. In Proceedings of
the 13th International Conference on Automated Planning
and Scheduling.
Frank, J.; Gross, M. A. K.; and Kiirklii, E. 2004. Sofia’s
choice: An ai approach to scheduling airborne astronomy
observations. In Proceedings of the 16th Conference on
Innovative Applications of Artificial Intelligence.
Globus, A.; Crawford, J.; Lohn, J.; and Pryor, A. 2004. A
comparison of techniques for scheduling earth observing
satellites. In Proceedings of the 16th Conference on the
Innovative Applications of Artificial Intelligence.
Johnston, M., and Miller, G. 1994. Spike: Intelligent
scheduling of the hubble space telescope. In Zweben, M.,
and Fox, M., eds., Intelligent Scheduling. Morgan Kauf-
mann Publishers.
J o s h , D., and Clements, D. 1999. Squeaky wheel
optimization. Journal of Arti3cial Intelligence Research
10:353 - 373.
Lindgren, B. 1976. Statistical Theory. Macmillian.
Meeus, J. 1991. Astronomical Algorithms. Willmann-Bell,
Inc.
Potter, W., and Gasch, J. 1998. A photo album of earth:
Scheduling lqdsat 7 mission daily activities. In Proceed-
ings of the International Symposium Space Mission Oper-
ations and Ground Data Systems.
Smith, T., and Pyle, J. 2004. An effective algorithm for
project scheduling with arbitrary temporal constraints. In
Proceedings of the l g t h National Conference on Artijicial
Intelligence.:
Smith, D. 2004. Choosing objectives in over-subscription
planning. Froceedings of the 14th International Confer-
ence on Automated Planning and Scheduling.

1

